Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant J ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38646817

RESUMEN

The main bottleneck in the application of biotechnological breeding methods to woody species is due to the in vitro regeneration recalcitrance shown by several genotypes. On the other side, woody species, especially grapevine (Vitis vinifera L.), use most of the pesticides and other expensive inputs in agriculture, making the development of efficient approaches of genetic improvement absolutely urgent. Genome editing is an extremely promising technique particularly for wine grape genotypes, as it allows to modify the desired gene in a single step, preserving all the quality traits selected and appreciated in elite varieties. A genome editing and regeneration protocol for the production of transgene-free grapevine plants, exploiting the lipofectamine-mediated direct delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to target the phytoene desaturase gene, is reported. We focused on Nebbiolo (V. vinifera), an extremely in vitro recalcitrant wine genotype used to produce outstanding wines, such as Barolo and Barbaresco. The use of the PEG-mediated editing method available in literature and employed for highly embryogenic grapevine genotypes did not allow the proper embryo development in the recalcitrant Nebbiolo. Lipofectamines, on the contrary, did not have a negative impact on protoplast viability and plant regeneration, leading to the obtainment of fully developed edited plants after about 5 months from the transfection. Our work represents one of the first examples of lipofectamine use for delivering editing reagents in plant protoplasts. The important result achieved for the wine grape genotype breeding could be extended to other important wine grape varieties and recalcitrant woody species.

3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674493

RESUMEN

Climate change is deeply impacting the food chain production, lowering quality and yield. In this context, the international scientific community has dedicated many efforts to enhancing resilience and sustainability in agriculture. Italy is among the main European producers of several fruit trees; therefore, national research centers and universities undertook several initiatives to maintain the specificity of the 'Made in Italy' label. Despite their importance, fruit crops are suffering from difficulties associated with the conventional breeding approaches, especially in terms of financial commitment, land resources availability, and long generation times. The 'new genomic techniques' (NGTs), renamed in Italy as 'technologies for assisted evolution' (TEAs), reduce the time required to obtain genetically improved cultivars while precisely targeting specific DNA sequences. This review aims to illustrate the role of the Italian scientific community in the use of NGTs, with a specific focus on Citrus, grapevine, apple, pear, chestnut, strawberry, peach, and kiwifruit. For each crop, the key genes and traits on which the scientific community is working, as well as the technological improvements and advancements on the regeneration of local varieties, are presented. Lastly, a focus is placed on the legal aspects in the European and in Italian contexts.


Asunto(s)
Frutas , Árboles , Árboles/genética , Frutas/genética , Fitomejoramiento/métodos , Genoma de Planta , Genómica
4.
Plant Physiol Biochem ; 193: 99-109, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36343465

RESUMEN

In vitro plant regeneration is a pivotal process in genetic engineering to obtain large numbers of transgenic, cisgenic and gene edited plants in the frame of functional gene or genetic improvement studies. However, several issues emerge as regeneration is not universally possible across the plant kingdom and many variables must be considered. In grapevine (Vitis spp.), as in other woody and fruit tree species, the regeneration process is impaired by a recalcitrance that depends on numerous factors such as genotype and explant-dependent responses. This is one of the major obstacles in developing gene editing approaches and functional genome studies in grapevine and it is therefore crucial to understand how to achieve efficient regeneration across different genotypes. Further issues that emerge in regeneration need to be addressed, such as somaclonal mutations which do not allow the regeneration of individuals identical to the original mother plant, an essential factor for commercial use of the improved grapevines obtained through the New Breeding Techniques. Over the years, the evolution of protocols to achieve plant regeneration has relied mainly on optimizing protocols for genotypes of interest whilst nowadays with new genomic data available there is an emerging opportunity to have a clearer picture of its molecular regulation. The goal of this review is to discuss the latest information available about different aspects of grapevine in vitro regeneration, to address the main factors that can impair the efficiency of the plant regeneration process and cause post-regeneration problems and to propose strategies for investigating and solving them.


Asunto(s)
Fitomejoramiento , Vitis , Vitis/genética , Edición Génica/métodos , Ingeniería Genética , Genómica
5.
Plant J ; 112(4): 1098-1111, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36209488

RESUMEN

To understand how grapevine sinks compete with each other during water stress and subsequent rehydration, carbon (C) allocation patterns in drought-rehydrated vines (REC) at the beginning of fruit ripening were compared with control vines maintained under drought (WS) or fully irrigated (WW). In the 30 days following rehydration, the quantity and distribution of newly fixed C between leaves, roots and fruits was evaluated through 13 CO2 pulse-labeling and stable isotope ratio mass spectrometry. REC plants diverted the same percentage of fixed C towards the berries as the WS plants, although the percentage was higher than that of WW plants. Net photosynthesis (measured simultaneously with root respiration in a multichamber system for analysis of gas exchange above- and below-ground) was approximately two-fold greater in REC compared to WS treatment, and comparable or even higher than in WW plants. Maximizing C assimilation and delivery in REC plants led to a significantly higher amount of newly fixed C compared to both control treatments, already 2 days after rehydration in root, and 2 days later in the berries, in line with the expression of genes responsible for sugar metabolism. In REC plants, the increase in C assimilation was able to support the requests of the sinks during fruit ripening, without affecting the reserves, as was the case in WS. These mechanisms clarify what is experienced in fruit crops, when occasional rain or irrigation events are more effective in determining sugar delivery towards fruits, rather than constant and satisfactory water availabilities.


Asunto(s)
Sequías , Vitis , Frutas/metabolismo , Vitis/genética , Vitis/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Azúcares/metabolismo
6.
Methods Mol Biol ; 2536: 381-394, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35819615

RESUMEN

More than 80 viral species, many of which are not associated with a clear disease or symptomatology, can infect grapevine. The study of grapevine-virus interactions in recent years is playing an increasingly important role and these studies have shown that the molecular and physiological responses to a virus greatly vary depending on the viral strains, the presence of multiple viral infections, the grapevine genotype, and the environment. Moreover, due to the characteristics of the grapevine cultivation and its vegetative propagation, it is very difficult to find healthy plants in vineyards to use them as control in the experiments. Starting from these considerations, in order to investigate the plant-virus interaction in an unbiased way, it is important to set up an experimental system able to control as much of these variables as possible. The protocol here proposed provides the overcome some of these factors by: (i) the production of healthy plants by somatic embryogenesis; (ii) the virus transmission using in vitro micrografting, and (iii) the transfer of in vitro plants to ex-vitro conditions for the analysis of interest.


Asunto(s)
Enfermedades de las Plantas , Técnicas de Embriogénesis Somática de Plantas , Virus de Plantas , Vitis , Interacciones Microbiota-Huesped , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Vitis/virología
7.
J Exp Bot ; 73(12): 4046-4064, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35325111

RESUMEN

Recalcitrant adventitious root (AR) development is a major hurdle in propagating commercially important woody plants. Although significant progress has been made to identify genes involved in subsequent steps of AR development, the molecular basis of differences in apparent recalcitrance to form AR between easy-to-root and difficult-to-root genotypes remains unknown. To address this, we generated cambium tissue-specific transcriptomic data from stem cuttings of hybrid aspen, T89 (difficult-to-root) and hybrid poplar OP42 (easy-to-root), and used transgenic approaches to verify the role of several transcription factors in the control of adventitious rooting. Increased peroxidase activity was positively correlated with better rooting. We found differentially expressed genes encoding reactive oxygen species scavenging proteins to be enriched in OP42 compared with T89. A greater number of differentially expressed transcription factors in cambium cells of OP42 compared with T89 was revealed by a more intense transcriptional reprograming in the former. PtMYC2, a potential negative regulator, was less expressed in OP42 compared with T89. Using transgenic approaches, we demonstrated that PttARF17.1 and PttMYC2.1 negatively regulate adventitious rooting. Our results provide insights into the molecular basis of genotypic differences in AR and implicate differential expression of the master regulator MYC2 as a critical player in this process.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Populus , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo
8.
Microb Biotechnol ; 15(5): 1357-1373, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35182024

RESUMEN

Grapevine (Vitis spp.) is a widespread fruit tree hosting many viral entities that interact with the plant modifying its responses to the environment. The production of virus-free plants is becoming increasingly crucial for the use of grapevine as a model species in different studies. Using high-throughput RNA sequencing, the viromes of seven mother plants grown in a germplasm collection vineyard were sequenced. In addition to the viruses and viroids already detected in grapevine, we identified 13 putative new mycoviruses. The different spread among grapevine tissues collected in vineyard, greenhouse and in vitro conditions suggested a clear distinction between viruses/viroids and mycoviruses that can successfully be exploited for their identification. Mycoviruses were absent in in vitro cultures, while plant viruses and viroids were particularly accumulated in these plantlets. Somatic embryogenesis applied to the seven mother plants was effective in the elimination of the complete virome, including mycoviruses. However, different sanitization efficiencies for viroids and grapevine pinot gris virus were observed among genotypes. The absence of mycoviruses in in vitro plantlets, associated with the absence of all viral entities in somaclones, suggested that this regeneration technique is also effective to eradicate endophytic/epiphytic fungi, resulting in gnotobiotic or pseudo-gnotobiotic plants.


Asunto(s)
Virus de Plantas , Vitis , Desarrollo Embrionario , Enfermedades de las Plantas , Virus de Plantas/genética , ARN Viral , Regeneración , Viroma
9.
BMC Genomics ; 23(1): 159, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35209840

RESUMEN

BACKGROUND: 'Nebbiolo' is a grapevine cultivar typical of north-western Italy, appreciated for producing high-quality red wines. Grapevine cultivars are characterized by possessing highly heterozygous genomes, including a great incidence of genomic rearrangements larger than 50 bp, so called structural variations (SVs). Even though abundant, SVs are an under-explored source of genetic variation mainly due to methodological limitations at their detection. RESULTS: We employed a multiple platform approach to produce long-range genomic data for two different 'Nebbiolo' clones, namely: optical mapping, long-reads and linked-reads. We performed a haplotype-resolved de novo assembly for cultivar 'Nebbiolo' (clone CVT 71) and used an ab-initio strategy to annotate it. The annotated assembly enhanced our ability to detect SVs, enabling the study of genomic regions not present in the grapevines' reference genome and accounting for their functional implications. We performed variant calling analyses at three different organizational levels: i) between haplotypes of clone CVT 71 (primary assembly vs haplotigs), ii) between 'Nebbiolo' and 'Cabernet Sauvignon' assemblies and iii) between clones CVT 71 and CVT 185, representing different 'Nebbiolo' biotypes. The cumulative size of non-redundant merged SVs indicated a total of 79.6 Mbp for the first comparison and 136.1 Mbp for the second one, while no SVs were detected for the third comparison. Interestingly, SVs differentiating cultivars and haplotypes affected similar numbers of coding genes. CONCLUSIONS: Our results suggest that SVs accumulation rate and their functional implications in 'Nebbiolo' genome are highly-dependent on the organizational level under study. SVs are abundant when comparing 'Nebbiolo' to a different cultivar or the two haplotypes of the same individual, while they turned absent between the two analysed clones.


Asunto(s)
Vitis , Variación Estructural del Genoma , Italia , Vitis/genética
10.
Plant Physiol ; 188(1): 490-508, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34726761

RESUMEN

Somatic embryogenesis (SE) represents the most appropriate tool for next-generation breeding methods in woody plants such as grapevine (Vitis vinifera L.). However, in this species, the SE competence is strongly genotype-dependent and the molecular basis of this phenomenon is poorly understood. We explored the genetic and epigenetic basis of SE in grapevine by profiling the transcriptome, epigenome, and small RNAome of undifferentiated, embryogenic, and non-embryogenic callus tissues derived from two genotypes differing in competence for SE, Sangiovese and Cabernet Sauvignon. During the successful formation of embryonic callus, we observed the upregulation of epigenetic-related transcripts and short interfering RNAs in association with DNA hypermethylation at transposable elements in both varieties. Nevertheless, the switch to nonembryonic development matched the incomplete reinforcement of transposon silencing, and the evidence of such effect was more apparent in the recalcitrant Cabernet Sauvignon. Transcriptomic differences between the two genotypes were maximized already at early stage of culture where the recalcitrant variety expressed a broad panel of genes related to stress responses and secondary metabolism. Our data provide a different angle on the SE molecular dynamics that can be exploited to leverage SE as a biotechnological tool for fruit crop breeding.


Asunto(s)
Adaptación Fisiológica/genética , Epigenómica , Organogénesis de las Plantas/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Vitis/crecimiento & desarrollo , Vitis/genética , Células Cultivadas , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Técnicas de Embriogénesis Somática de Plantas
12.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802641

RESUMEN

Vitis vinifera 'Nebbiolo' is one of the most important wine grape cultivars used to produce prestigious high-quality wines known throughout the world, such as Barolo and Barbaresco. 'Nebbiolo' is a distinctive genotype characterized by medium/high vigor, long vegetative and ripening cycles, and limited berry skin color rich in 3'-hydroxylated anthocyanins. To investigate the molecular basis of these characteristics, 'Nebbiolo' berries collected at three different stages of ripening (berry pea size, véraison, and harvest) were compared with V. vinifera 'Barbera' berries, which are rich in 3',5'-hydroxylated anthocyanins, using transcriptomic and analytical approaches. In two consecutive seasons, the two genotypes confirmed their characteristic anthocyanin profiles associated with a different modulation of their transcriptomes during ripening. Secondary metabolism and response to stress were the functional categories that most differentially changed between 'Nebbiolo' and 'Barbera'. The profile rich in 3'-hydroxylated anthocyanins of 'Nebbiolo' was likely linked to a transcriptional downregulation of key genes of anthocyanin biosynthesis. In addition, at berry pea size, the defense metabolism was more active in 'Nebbiolo' than 'Barbera' in absence of biotic attacks. Accordingly, several pathogenesis-related proteins, WRKY transcription factors, and stilbene synthase genes were overexpressed in 'Nebbiolo', suggesting an interesting specific regulation of defense pathways in this genotype that deserves to be further explored.


Asunto(s)
Metabolismo Secundario , Vitis/inmunología , Vitis/metabolismo , Antocianinas/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genotipo , Metabolismo Secundario/genética , Solubilidad , Transcripción Genética , Transcriptoma/genética , Vitis/genética , Vitis/crecimiento & desarrollo
13.
Plant Cell Rep ; 40(1): 205-211, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33089358

RESUMEN

KEY MESSAGE: The tendency of somatic embryogenesis to regenerate plants only from the L1 layer, associated with the spread of chimerism in grapevine, must be carefully considered in the framework of biotechnological improvement programmes. Grapevine is an important fruit crop with a high economic value linked to traditional genotypes that have been multiplied for centuries by vegetative propagation. In this way, somatic variations that can spontaneously occur within the shoot apical meristem are fixed in the whole plant and represent a source of intra-varietal variability. Previously identified inconsistencies in the allelic calls of single nucleotide variants (SNVs) suggested that the Vitis vinifera 'Nebbiolo' CVT185 clone is a potential periclinal chimera. We adopted the somatic embryogenesis technique to separate the two genotypes putatively associated with the L1 and L2 layers of CVT185 into different somaclones. Despite the recalcitrance of 'Nebbiolo' to the embryogenic process, 58 somaclones were regenerated and SNV genotyping assays attested that the genotype of all them differed from that of the mother plant and was only attributable to L1. The results confirmed that L2 has low or no competence for differentiating somatic embryos. After one year in the greenhouse, the somaclones showed no phenotypic alterations in comparison with the mother plant; however further analyses are needed to identify potential endogenous sources of variation. The tendency of somatic embryogenesis to regenerate plants only from L1 must be carefully considered in the framework of biotechnological improvement programmes in this species.


Asunto(s)
Flores/citología , Técnicas de Embriogénesis Somática de Plantas/métodos , Vitis/genética , Quimera , Flores/genética , Genotipo , Polimorfismo de Nucleótido Simple , Vitis/citología
14.
Front Plant Sci ; 10: 1575, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31867031

RESUMEN

Several research studies were focused to understand how grapevine cultivars respond to environment; nevertheless, the biological mechanisms tuning this phenomenon need to be further deepened. Particularly, the molecular processes underlying the interplay between clones of the same cultivar and environment were poorly investigated. To address this issue, we analyzed the transcriptome of berries from three "Nebbiolo" clones grown in different vineyards, during two ripening seasons. RNA-sequencing data were implemented with analyses of candidate genes, secondary metabolites, and agronomical parameters. This multidisciplinary approach helped to dissect the complexity of clone × environment interactions, by identifying the molecular responses controlled by genotype, vineyard, phenological phase, or a combination of these factors. Transcripts associated to sugar signalling, anthocyanin biosynthesis, and transport were differently modulated among clones, according to changes in berry agronomical features. Conversely, genes involved in defense response, such as stilbene synthase genes, were significantly affected by vineyard, consistently with stilbenoid accumulation. Thus, besides at the cultivar level, clone-specific molecular responses also contribute to shape the agronomic features of grapes in different environments. This reveals a further level of complexity in the regulation of genotype × environment interactions that has to be considered for orienting viticultural practices aimed at enhancing the quality of grape productions.

15.
Mol Plant ; 12(11): 1499-1514, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31520787

RESUMEN

In Arabidopsis thaliana, canonical auxin-dependent gene regulation is mediated by 23 transcription factors from the AUXIN RESPONSE FACTOR (ARF) family that interact with auxin/indole acetic acid repressors (Aux/IAAs), which themselves form co-receptor complexes with one of six TRANSPORT INHIBITOR1/AUXIN-SIGNALLING F-BOX (TIR1/AFB) proteins. Different combinations of co-receptors drive specific sensing outputs, allowing auxin to control a myriad of processes. ARF6 and ARF8 are positive regulators of adventitious root initiation upstream of jasmonate, but the exact auxin co-receptor complexes controlling the transcriptional activity of these proteins has remained unknown. Here, using loss-of-function mutants we show that three Aux/IAA genes, IAA6, IAA9, and IAA17, act additively in the control of adventitious root (AR) initiation. These three IAA proteins interact with ARF6 and/or ARF8 and likely repress their activity in AR development. We show that TIR1 and AFB2 are positive regulators of AR formation and TIR1 plays a dual role in the control of jasmonic acid (JA) biosynthesis and conjugation, as several JA biosynthesis genes are up-regulated in the tir1-1 mutant. These results lead us to propose that in the presence of auxin, TIR1 and AFB2 form specific sensing complexes with IAA6, IAA9, and/or IAA17 to modulate JA homeostasis and control AR initiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/metabolismo , Estabilidad Proteica
16.
Front Plant Sci ; 9: 1034, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30065744

RESUMEN

Micro(mi)RNAs play crucial roles in plant developmental processes and in defense responses to biotic and abiotic stresses. In the last years, many works on small RNAs in grapevine (Vitis spp.) were published, and several conserved and putative novel grapevine-specific miRNAs were identified. In order to reorganize the high quantity of available data, we produced "miRVIT," the first database of all novel grapevine miRNA candidates characterized so far, and still not deposited in miRBase. To this aim, each miRNA accession was renamed, repositioned in the last version of the grapevine genome, and compared with all the novel and conserved miRNAs detected in grapevine. Conserved and novel miRNAs cataloged in miRVIT were then used for analyzing Vitis vinifera plants infected by Flavescence dorée (FD), one of the most severe phytoplasma diseases affecting grapevine. The analysis of small RNAs from healthy, recovered (plants showing spontaneous and stable remission of symptoms), and FD-infected "Barbera" grapevines showed that FD altered the expression profiles of several miRNAs, including those involved in cell development and photosynthesis, jasmonate signaling, and disease resistance response. The application of miRVIT in a biological context confirmed the effectiveness of the followed approach, especially for the identification of novel miRNA candidates in grapevine. miRVIT database is available at http://mirvit.ipsp.cnr.it. Highlights: The application of the newly produced database of grapevine novel miRNAs to the analysis of plants infected by Flavescence dorée reveals key roles of miRNAs in photosynthesis and jasmonate signaling.

17.
Mol Plant Pathol ; 19(12): 2651-2666, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30055094

RESUMEN

Plant virus infections are often difficult to characterize as they result from a complex molecular and physiological interplay between a pathogen and its host. In this study, the impact of the phloem-limited grapevine virus B (GVB) on the Vitis vinifera L. wine-red cultivar Albarossa was analysed under field conditions. Trials were carried out over two growing seasons by combining agronomic, molecular, biochemical and ecophysiological approaches. The data showed that GVB did not induce macroscopic symptoms on 'Albarossa', but affected the ecophysiological performances of vines in terms of assimilation rates, particularly at the end of the season, without compromising yield and vigour. In GVB-infected plants, the accumulation of soluble carbohydrates in the leaves and transcriptional changes in sugar- and photosynthetic-related genes seemed to trigger defence responses similar to those observed in plants infected by phytoplasmas, although to a lesser extent. In addition, GVB activated berry secondary metabolism. In particular, total anthocyanins and their acetylated forms accumulated at higher levels in GVB-infected than in GVB-free berries, consistent with the expression profiles of the related biosynthetic genes. These results contribute to improve our understanding of the multifaceted grapevine-virus interaction.


Asunto(s)
Flexiviridae/fisiología , Vitis/virología , Antocianinas/metabolismo , Carbohidratos/análisis , Clima , Flavonoides/metabolismo , Frutas/virología , Fotosíntesis/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Estaciones del Año , Vitis/crecimiento & desarrollo
18.
Sci Rep ; 7(1): 17294, 2017 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-29229917

RESUMEN

'Nebbiolo' (Vitis vinifera) is among the most ancient and prestigious wine grape varieties characterised by a wide genetic variability exhibited by a high number of clones (vegetatively propagated lines of selected mother plants). However, limited information is available for this cultivar at the molecular and genomic levels. The whole-genomes of three 'Nebbiolo' clones (CVT 71, CVT 185 and CVT 423) were re-sequenced and a de novo transcriptome assembly was produced. Important remarks about the genetic peculiarities of 'Nebbiolo' and its intra-varietal variability useful for clonal identification were reported. In particular, several varietal transcripts identified for the first time in 'Nebbiolo' were disease resistance genes and single-nucleotide variants (SNVs) identified in 'Nebbiolo', but not in other cultivars, were associated with genes involved in the stress response. Ten newly discovered SNVs were successfully employed to identify some periclinal chimeras and to classify 98 'Nebbiolo' clones in seven main genotypes, which resulted to be linked to the geographical origin of accessions. In addition, for the first time it was possible to discriminate some 'Nebbiolo' clones from the others.


Asunto(s)
Genoma de Planta , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Vitis/clasificación , Vitis/genética , Secuenciación Completa del Genoma/métodos , Células Clonales , Regulación de la Expresión Génica de las Plantas , Genotipo , Filogenia , Transcriptoma
19.
Sci Rep ; 7(1): 16301, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29176676

RESUMEN

Ozone, a powerful oxidative stressor, has been recently used in wine industry as sanitizing agent to reduce spoilage microflora on grapes. In this study, we evaluated ozone-induced metabolic and molecular responses during postharvest grape dehydration. Ozone increased the contents of total volatile organic compounds (VOCs), which have a great impact on the organoleptic properties of grapes and wines. Among terpenes, responsible for floral and fruity aroma, linalool, geraniol and nerol were the major aromatic markers of Moscato bianco grapes. They were significantly affected by the long-term ozone treatment, increasing their concentration in the last phases of dehydration (>20% weight loss). At molecular level, our results demonstrated that both postharvest dehydration and ozone exposure induce the biosynthesis of monoterpenes via methylerythritol phosphate (MEP) pathway and of aldehydes from lipoxygenase-hydroperoxide lyase (LOX-HPL) pathway. Therefore, transcriptional changes occurred and promoted the over-production of many important volatile compounds for the quality of white grapes.


Asunto(s)
Ozono/farmacología , Vitis/efectos de los fármacos , Vitis/metabolismo , Aldehído-Liasas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Frutas/efectos de los fármacos , Frutas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
20.
Front Plant Sci ; 8: 654, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28496453

RESUMEN

Rootstocks are among the main factors that influence grape development as well as fruit and wine composition. In this work, rootstock/scion interactions were studied using transcriptomic and metabolic approaches on leaves of the "Gaglioppo" variety, grafted onto 13 different rootstocks growing in the same vineyard. The whole leaf transcriptome of "Gaglioppo" grafted onto five selected rootstocks showed high variability in gene expression. In particular, significant modulation of transcripts linked to primary and secondary metabolism was observed. Interestingly, genes and metabolites involved in defense responses (e.g., stilbenes and defense genes) were strongly activated particularly in the GAG-41B combination, characterized in addition by the down-regulation of abscisic acid (ABA) metabolism. On the contrary, the leaves of "Gaglioppo" grafted onto 1103 Paulsen showed an opposite regulations of those transcripts and metabolites, together with the greater sensitivity to downy mildew in a preliminary in vitro assay. This study carried out an extensive transcriptomic analysis of rootstock effects on scion leaves, helping to unravel this complex interaction, and suggesting an interesting correlation among constitutive stilbenes, ABA compound, and disease susceptibility to a fungal pathogen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA